Genetic Control

18 A peptide consists of ten amino acids of four different kinds.

What is the theoretical minimum number of tRNA molecules required to translate the mRNA for this peptide?

- **A** 4
- **B** 10
- C 12
- **D** 30

9700/1/M/J03

2 19 Bacteria were cultured in a medium containing heavy nitrogen (¹⁵N) until all the DNA was labelled. These bacteria were then grown in a medium containing only normal nitrogen (¹⁴N) for five generations. The percentage of cells containing ¹⁵N in each generation was estimated.

Which curve provides evidence that DNA replication is semi-conservative?

9700/1/M/J03

3	20	RN	A is extracted from β of	cells in the pancreas.	It is used to make D	NA coding for hum	nan insulin.				
		Wh	ich enzyme is used to	make the DNA?							
		A	DNA ligase								
		В	restriction enzyme								
		С	reverse transcriptase)							
		D	RNA polymerase								
						97	00/1/M/J03				
4	21	Wh	hich type of molecule is the end product of translation?								
		A	amino acid								
		В	DNA								
		С	mRNA								
		D	polypeptide								
							700/1/M/J03				
5	22	Wh	ich statement about t	he strands of a new	ly replicated DNA m	olecule is correct?	•				
		Α	Both strands are ma	ide up of newly asse	embled nucleotides.						
		В	Both strands contain	n some nucleotides f	from the original mo	lecule.					
		С	One strand is new a	nd the other is part	of the original moled	cule.					
		D	The sugar-phosphat	e chains are conser	ved and new bases						
6	23	A po	olypeptide molecule co	ontains the amino aci	d sequence, glycine		700/01/M/J/04 _ - valine.				
			table shows the DNA			·					
		1110	Table shows the Bivit		lo doldo.		\neg				
			glycine	leucine	lysine	valine					
			ccc	GAA	TTT	CAA					
		Trar	nsfer RNA molecules v	vith which anticodons	s are needed for the	synthesis of this po	olypeptide?				
		Transfer RNA molecules with which anticodons are needed for the synthesis of this polypeptide? A CCC GAA TTT CAA									
		В	CCC GAA UUU C								
		С	GGG CUU AAA G								
		D	GGG CUU UUU G	SUU							
						97	700/01/M/J/04				
i	i										

7 24 A protein contains all the common amino acids.

What would be the hypothetical minimum number of types of tRNA molecules needed for the synthesis of this protein?

A 3

9

B 4

C 20

D 64

9700/01/M/J/04

8 25 The diagram shows part of a DNA molecule.

Which letters indicate cytosine, deoxyribose, phosphate and thymine?

	cytosine	deoxyribose	phosphate	thymine
Α	W	Х	Υ	Z
В	Υ	Х	W	Z
С	Z	W	Х	Υ
D	Υ	Z	Х	W

9700/01/M/J/04

22 The table shows the percentages of bases in DNA from various types of cell.

source of DNA	adenine	guanine	thymine	cytosine
calf thymus	28.2	21.5	27.8	22.5
bull spleen	27.9	22.7	27.3	22.1
bull sperm	28.7	22.2	27.2	22.0
rat bone marrow	28.6	21.4	28.4	21.5
yeast	31.3	18.7	32.9	17.1

What is a valid deduction from these data?

- A DNA occurs in about the same amounts in all cells from the same species.
- **B** Minute differences in DNA from different cells have large effects.
- **C** The four bases show complementary base pairing.
- **D** The structure of DNA is similar in both yeast and animal cells.

9700/01/M/J/05

10	23	Wł	nich stateme	ent correctly describes the transcription of DNA?						
		Α	It is a semi	i-conservative process.						
		В	It occurs a	occurs at the surface of the ribosome.						
		С	It produces	produces messenger RNA.						
		D	It produces	s polypeptides.						
	24	On	a of the code	ons for the amino acid phenylalanine is UUC.	9700/01/M/J/05					
11	24									
			nich diagram mRNA?	shows how the tRNA carrying phenylalanine pairs with the correspondence	nding section					
		Α	tRNA mRNA	AAG UUC						
		В	tRNA	TTG						
			mRNA	UUC						
		С	tRNA mRNA	UUC AAG						
		D	tRNA	UUC						
			mRNA	TTG	9700/01/M/J/05					
12	21	The	e diagram sho	ows part of a DNA molecule.	-					
		Wh	ich part is a r	nucleotide?						
				С						
				В						
				A COTTON STATE						
			(
			'							
				$\mathcal{A} \cap \mathcal{A} \wedge $						
				The state of the s						
				D						
					9700/01/M/J/06					

13	Bacteria were grown for many generations in a medium containing a heavy isotope of nitrogen, 15N. They were then transferred to a medium containing the light isotope of nitrogen, 14N. They were given time to replicate DNA and divide once. Their DNA was extracted, spun in a centrifuge and observed using ultra violet light. The DNA with the 15N settled at a lower depth than the DNA with the 14N. Which shows the predicted results after one generation in the medium with the light isotope?										
	A В С								D		
		DN. with	A 14N	DNA — with ¹⁵ N		DNA with 14N and 1			DNA —with ¹⁴ N DNA —with ¹⁵ N		
14	23	In a ge	enetic enginee	ring experime	ent a piece	of double-s	stranded	DNA co	ntaining 60	9700/01/M/ 00 nucleotid	_
		is tran	scribed and tra	anslated.	·				-		
		What	is the total nun	nber of amino	acids use	ed?					
		A 50	00	B 1000	С	2000	D	3000			
15	24	DNA f	from a chromos	some is analy	sed and 2	0 % of its ba	ses are f	ound to	be cytosine	9700/01/M/、 e.	J/06_
		Which	n percentage of	f uracil moleci	ules will b	e found in m	RNA trar	nscribed	from this D	NA?	
		A 20		B 30	С	40	D	60			
										9700/01/M/	J/06_
16	20	Which	n type of sugar	and bonds a	re found i	n a DNA mo	lecule?				
	type of sugar		f sugar	com	bonds linkir plementary						
		Α	hex	ose		hydrogen					
		В	hex	cose		peptide					
		С	per	tose		hydrogen					
		D	per	tose		peptide					
										9700/01/M/	J/07

21 A length of double-stranded DNA contains 120 nucleotides and codes for polypeptide X.

What is the maximum length of polypeptide X?

- A 20 amino acids
- B 40 amino acids
- C 60 amino acids
- D 120 amino acids

9700/01/M/J/07

18 22 In a DNA molecule, the base sequence AGT codes for the amino acid serine.

What is the base sequence of the anti-codon on the tRNA to which serine becomes attached?

- A AGU
- **B** GAU
- C TCA
- **D** UCA

9700/01/M/J/07

19 21 The RNA triplet UAG acts as a stop codon terminating the synthesis of a polypeptide. The diagram shows a strand of DNA which codes for four amino acids.

Where would a mutation, introducing a thymine nucleotide, result in the termination of transcription?

9700/01/M/J/08

23 The diagram shows two bases, **X** and **Y**, joined by hydrogen bonds (----) in DNA.

What are the correct bases?

	X	Y		
Α	adenine	cytosine		
В	adenine	uracil		
С	cytosine	guanine		
D	cytosine	thymine		

9700/01/M/J/08

prophase

9700/01/M/J/08

Source: http://www.gceguide.com/topical-past-papers/

D

transcription

8

22	24	Part o	f the amino acid	sequences in r	ormal and	and sickle cell haemoglobin are shown.			
			noi	mal haemoglob	in	sickle cell haer	noglobin		
			thr-	pro-glu-glu		thr-pro-val-glu	thr-pro-val-glu		
		Possil	ole mRNA codor	ns for these ami	no acids a	ire	e		
			glu	tamine (glu) GA	proline (pro) Co	CU CCC			
			thre	eonine (thr) ACI	valine (val) GU	A GUG			
		Which	tRNA molecule	is not involved	nation of this pa	art of the sic	ckle cell haemoglo	obin?	
			Α	В		С		D	
		($\overline{\bigcirc}$				
				\mathcal{I}	\				
)				
			C A U	C U	U	U G A		U T C	
23	20	In the	DNA sequence	for sickle cell ar	naemia, ad	lenine replaces	thymine in	9700/01/ a CTT triplet, for	
23		the trip		synthesis of the				e amino acid vali	
		What i	s the anticodon	in the transfer R	NA molec	ule carrying this	valine?		
		A C	AU B	CUA	C GA	U D	GUA		
								9700/01/	M/J/09
24	21	Which	n statements ar	e correct abou	t DNA tra	nscription and	translation	?	
			tı	anscription			translatio	n	
		Α	is ser	mi-conservative	Э	pr	oduces mi	RNA	
		В	pro	produces mRNA			emi-conser	rvative	
		С	occurs at the	surface of rib	osomes	pr	oduces mi	RNA	
		D	pro	duces mRNA		occurs at the	ne surface	of ribosomes	
								9700/01/	M/J/09

Bacteria were cultured in a medium containing heavy nitrogen (¹⁵N) until all the DNA was labelled. These bacteria were then grown in a medium containing only normal nitrogen (¹⁴N) for five generations. The percentage of cells containing ¹⁵N in each generation was estimated.

Which curve provides evidence that DNA replication is semi-conservative?

23 The table shows the sugars and some bases found in RNA and DNA.

Which is correct?

26

	RNA	DNA		
Α	ribose	thymine		
В	ribose	uracil		
С	thymine	deoxyribose		
D	uracil	ribose		

9700/01/M/J/09

- 21 What would be the result of analysing part of a DNA molecule?
 - A hexose sugars and phosphates in equal proportion, and an equal number of cytosine and guanine bases
 - **B** nucleotides and phosphates in equal proportion, and an equal number of adenine and cytosine bases
 - **C** pentose sugars and phosphates in equal proportion, and an equal number of adenine and thymine bases
 - D twice as many phosphates as pentose sugars, and an equal number of adenine and guanine bases

9700/11/M/J/10

10

28	22	DNA is said	I to replicate in a semi-c	onservative way.					
			Meselson and Stahl's which has a generation		overwhelming support to t s.	this theory. They			
		Here are the	e steps in their experim	ent but they are in	the wrong order.				
		Р	All bacteria contain 15	N DNA.					
		Q	All bacteria contain hy	brid DNA (¹⁵ N DNA	A and ¹⁴ N DNA).				
		R	Bacteria contain eithe	r all ¹⁴ N DNA or hyl	brid DNA.				
		S Bacteria grown in a ¹⁵ N medium for many generations.							
	T Bacteria transferred to a ¹⁴ N medium and sampled every 50 minutes.								
	Which sequence of letters shows the correct order of the steps in the experiment?								
		$\mathbf{A} P \to Q \to R \to S \to T$							
		$\mathbf{B} P \to S \to T \to R \to Q$							
		$\mathbf{C} S \to P$	\rightarrow T \rightarrow Q \rightarrow R						
		$\mathbf{D} S \to R$	$\rightarrow Q \rightarrow P \rightarrow T$						
						9700/11/M/J/10			
29	23		minimum number of b (normal) allele to the H		equired to change the nuc e?	eleotide sequence			
		A 1	B 2	C 3	D 4				
						9700/11/M/J/10			
30	24	In a DNA m	olecule, the base sequ	ence AGT codes fo	or the amino acid serine.				
		What is the	base sequence of the	anti-codon on the th	RNA to which serine becom	nes attached?			
		A AGU	B GAU	C TCA	D UCA				
						9700/11/M/J/10			

31	20	DNA	A is said	to replic	cate in	a semi-conse	ervati	ve way.						
						Stahl's expe				elmi	ing suppo	rt to this	theory. The	y
		Her	e are the	e steps i	n their	experiment b	out th	ey are in t	he wro	ng o	rder.			
			Р	All bac	teria co	ontain ¹⁵ N DN	۱A.							
			Q	All bac	teria co	ontain hybrid	DNA	(15N DNA	and 14	N D	NA).			
			R	Bacter	ia cont	ain either all	¹⁴ N D	NA or hyl	orid DN	IA.				
			S	S Bacteria grown in a ¹⁵ N medium for many generations.										
			Т	T Bacteria transferred to a ¹⁴ N medium and sampled every 50 minutes.										
		Whi	ch sequ	ence of	letters	shows the co	orrect	order of	he step	os in	the exper	riment?		
		Α	$P \to Q$	\rightarrow R \rightarrow	$S \rightarrow T$									
		В	$P \rightarrow S$	\rightarrow T \rightarrow I	$R \rightarrow Q$									
		С	$S \rightarrow P$	\rightarrow T \rightarrow 0	$Q \rightarrow R$									
		D	$S \rightarrow R$	\rightarrow Q \rightarrow	$P \rightarrow T$									
32	22	ln o	DNA	ologula	the he	00 00000000	АСТ	oodoo fo	r the er	mina	acid carir	•	9700/12/M/J	/10_
32	22					se sequence								
		Wha	at is the	base se	quence	e of the anti-	codor	on the tF	RNA to	whic	ch serine b	pecomes	attached?	
		Α	AGU		B G	AU	С	TCA		D	UCA			
33	23	Wh	at is the	e minimu	ım nun	nber of base	subs	titutions	require	d to	change th	ne nucle	9700/12/M/J otide sequen	_
						to the HbS (·	
		Α	1		B 2		С	3		D	4			
	32	Wha	at would	he the i	rasult o	of analysing p	art o	fa DNΔ n	nolecul	۵2			9700/12/M/J	/10_
34	32													
			guanine		and p	nospnates ir	ı equ	aı propor	tion, ar	nd a	n equai n	umber c	of cytosine ar	ıa
		В		ides an e bases	d phos	sphates in e	equal	proportio	n, and	l an	equal nu	umber o	f adenine ar	ıd
		С	pentose thymine		and p	hosphates i	n equ	ıal propoi	tion, a	nd a	ın equal r	number o	of adenine ar	ıd
		D	twice as bases	s many _l	phosph	ates as pent	tose s	sugars, ar	nd an e	qual	number	of adenir	ne and guanir	

35 21 The mechanism of action of four drugs that inhibit DNA replication is stated below. Aphidicholine inhibits DNA polymerase. Cytarabine is converted into a molecule that can substitute for a DNA nucleotide and also inhibits DNA repair mechanisms. Epirubicin inhibits an enzyme involved in the unwinding of DNA and separation of strands. Hydroxycarbamide inhibits an enzyme involved in the production of deoxyribonucleotides. Which row correctly matches a drug to an explanation of the mechanism of action? explanation of mechanism of action decreased pool of DNA strands not DNA damaged exposed DNA available available as during replication template strands and cell death nucleotides inhibits templates for unable to be copied chain elongation occurs transcription Α aphidicholine epirubicin hydroxycarbamide cytarabine В epirubicin cytarabine hydroxycarbamide aphidicholine С hydroxycarbamide aphidicholine epirubicin cytarabine D hydroxycarbamide epirubicin cytarabine aphidicholine 9700/11/M/J/11 36 22 The following events occur during transcription. Bonds break between complementary bases. 2 Bonds form between complementary bases. 3 Sugar-phosphate bonds form. Free nucleotides pair with complementary nucleotides. Before the mRNA leaves the nucleus, which events will have occurred twice? 1 and 2 only **B** 1, 3 and 4 only **C** 2, 3 and 4 only **D** 1, 2, 3 and 4 9700/11/M/J/11 23 Which type of sugar and types of bonds are found in a DNA molecule? 37 type of sugar types of bonds Α non-reducing hydrogen and ionic В non-reducing hydrogen and peptide С reducing covalent and hydrogen D reducing hydrogen and peptide 9700/11/M/J/11

13

38	21 The table shows the tRNA anticodons for four amino acids.									
				amino acid	anticodon (tRNA)					
				asparagine	UUA					
				glutamic acid	CUU					
				proline	GGA					
				threonine	UGG					
		Ac	cell makes a polypeptid	e with the following a	mino acid sequence					
	glutamic acid – asparagine – threonine – proline									
		Wh	nat was the sequence o	of bases on the DNA	from which this was f	formed?				
		Α	GGAAATACCCTT							
		В	CAAAATACCCCT							
		С	CTTTTATGGGGA							
		D	CTTTTATCCGGA				0700/40/14/44			
39	22	W	hat does the enzyme	RNA polymerase s	synthesise?		9700/12/M/J/11			
		Α	a polypeptide from	an mRNA template	•					
		В	a strand of DNA fro	om an mRNA templ	ate					
		С	mRNA from a DNA	template						
		D	mRNA from a tRNA	A template						
	22	Th	o diagram shows part s	of a DNA malagula			9700/12/M/J/11			
40	23	ın	e diagram shows part o	or a DINA molecule.	,					
				P A						
					G-Q					
				Γ	Υ					
		Ho	w many hydrogen bond	ds are involved in hole	ding these strands of	DNA together?				
		Α	11 B 9	C 8	D 4					
							9700/12/M/J/11			

41	29	The f	following events occu	r during transcription.							
			1 Bonds break	between complementa	ary bases.						
			2 Bonds form b	etween complementar	y bases.						
			3 Sugar-phosp	hate bonds form.							
			4 Free nucleoti	des pair with complem	entary nucleotides.						
		Befo	re the mRNA leaves t	RNA leaves the nucleus, which events will have occurred twice?							
		Α ΄	1 and 2 only B 1	, 3 and 4 only C 2, 3	and 4 only D 1, 2,	3 and 4					
		T. (9700/13/M/J/11					
42	29	The fo	ollowing events occur	during transcription.							
			1 Bonds break b	etween complementary	bases.						
			2 Bonds form be	tween complementary b	ases.						
			3 Sugar-phospha	ate bonds form.							
			4 Free nucleotide	es pair with complement	ary nucleotides.						
		Before	e the mRNA leaves the	e nucleus, which events	will have occurred twice	e?					
		A 1	and 2 only B 1, 3	3 and 4 only C 2, 3 and	d 4 only D 1, 2, 3 an	d 4					
43	30	The m	nechanism of action of	four drugs that inhibit D	INA renlication is stated	9700/13/M/J/11					
43	30	1110 11		-	•	below.					
			•	nhibits DNA polymerase		5114					
				converted into a molecul NA repair mechanisms.	e that can substitute to	r a DNA nucleotide and					
			 Epirubicin inhil strands. 	bits an enzyme involve	d in the unwinding of I	DNA and separation of					
			 Hydroxycarbar deoxyribonucle 		nzyme involved in	the production of					
		Which	row correctly matche	s a drug to an explanati	on of the mechanism of	faction?					
			T								
				explanation of me							
			decreased pool of available	DNA strands not available as	DNA damaged during replication	exposed DNA					
			nucleotides inhibits chain elongation	templates for transcription	and cell death occurs	template strands unable to be copied					
		Α	aphidicholine	epirubicin	cytarabine	hydroxycarbamide					
		В	epirubicin	cytarabine	hydroxycarbamide	aphidicholine					
		С	hydroxycarbamide	aphidicholine	epirubicin	cytarabine					
		D	hydroxycarbamide	epirubicin	cytarabine	aphidicholine					

9700/13/M/J/11

44	20	Wh	ich statement describes a process that occurs during protein synthesis?					
		Α	Transcription is the linking together of a tRNA molecule and a specific amino acid.					
		В	Transcription is the linking together of free DNA nucleotides.					
		С	Translation is the linking together of amino acids coded for by mRNA.					
		D	Translation is the synthesis of an mRNA molecule by base pairing of nucleotides with DNA.					
		_	9700/11/M/J/12					
45	21	Du	ring semi-conservative replication of DNA in eukaryotic cells, the following processes occur.					
			Free nucleotides are hydrogen bonded to those on the exposed strand.					
			Hydrogen bonds are broken between the complementary base pairs.					
			3 The cell receives the signal to begin to divide.					
			4 Covalent bonds form between adjacent nucleotides on the same strand.					
			5 The DNA double helix is unwound.					
		Wh	Which shows the correct order of some of the processes?					
		Α	$3 \rightarrow 1 \rightarrow 2 \rightarrow 4$					
		В	$3 \rightarrow 2 \rightarrow 4 \rightarrow 5$					
		С	$5 \rightarrow 2 \rightarrow 1 \rightarrow 4$					
		D	$5 \rightarrow 2 \rightarrow 3 \rightarrow 1$					
			9700/11/M/J/12					
46	22	Αle	ength of double-stranded DNA contains 120 nucleotides and codes for polypeptide X.					
		Wh	nat is the maximum length of polypeptide X?					
		Α	20 amino acids					
		В	40 amino acids					
		С	60 amino acids					
		D	120 amino acids					
	20	۸	9700/11/M/J/12					
47	20	·	eptide consists of ten amino acids of four different kinds.					
			at is the theoretical minimum number of different tRNA molecules required to translate the NA for this peptide?					
		Α	4 B 10 C 12 D 30					
			9700/12/M/J/12					

48	21	Wh	nich state	ments about tRNA structure are correct?				
			1	There is a binding site for the attachment of a specific amino acid, as well as a different binding site for the attachment to the ribosome, in order to allow translation to occur.				
			2	There is a ribose-phosphate backbone with strong covalent phosphodiester bonds and areas within the polynucleotide chain where base-pairing by hydrogen bonding occurs.				
			3	There is a section known as an anticodon that contains the same triplet of bases as the triplet of DNA bases that has been transcribed to produce the mRNA codon.				
		Α	1 only					
		В	1 and 2	only				
		C 2 and 3 only						
		D	1, 2 and					
49	23	9700/12/M/J/12 23 A length of double-stranded DNA contains 120 nucleotides and codes for polypeptide X.						
		What is the maximum length of polypeptide X?						
		Α	20 amir	no acids				
		В	40 amir	no acids				
		С	60 amir	no acids				
		D	120 am	ino acids				
				9700/13/M/J/12				
50	24	Wh	ich state	ment describes a process that occurs during protein synthesis?				
		Α	Transcr	iption is the linking together of a tRNA molecule and a specific amino acid.				
		В	Transcr	iption is the linking together of free DNA nucleotides.				
		С	Transla	tion is the linking together of amino acids coded for by mRNA.				
		D	Transla	tion is the synthesis of an mRNA molecule by base pairing of nucleotides with DNA.				
				9700/13/M/J/12				

17

51	25	25 During semi-conservative replication of DNA in eukaryotic cells, the following processes occur.					
			1 Free nucleotic	des are hydrogen bo	onded to those on th	ne exposed strand.	
			2 Hydrogen bor	nds are broken betw	een the complemer	ntary base pairs.	
		3 The cell receives the signal to begin to divide.					
		4 Covalent bonds form between adjacent nucleotides on the same strand.					
		5 The DNA double helix is unwound.					
		Wh	ich shows the correct or	rder of some of the	processes?		
		Α	$3 \rightarrow 1 \rightarrow 2 \rightarrow 4$				
		В	$3 \rightarrow 2 \rightarrow 4 \rightarrow 5$				
		С	$5 \rightarrow 2 \rightarrow 1 \rightarrow 4$				
		D	$5 \rightarrow 2 \rightarrow 3 \rightarrow 1$				
	22	۱۸/۱	act in the maximum num	nhar of budragen ha	ndo in a longth of D	9700/13/M/J/12	
52	22					NA containing 700 base pairs?	
		Α	350 B 70	00 C 1	400 D 2	2100	
53	23	Wł	nich type of molecule is	always the end prod	duct of transcription	9700/11/M/J/13 ?	
		Α	amino acid		·		
		В	functional protein				
		С	mRNA				
		D	polypeptide				
						9700/11/M/J/13	
54	24	The	e table gives tRNA antic	odons for four amin	o acids.		
				amino acid	tRNA anticodon		
				asparagine	UUA		
				glutamic acid	CUU		
				proline	GGA		
				threonine	UGG		
		Αc	ell makes a polypeptide	with the amino acid	d sequence:		
			gluta	amic acid – asparag	ine – threonine – pr	roline	
			nat was the sequence on RNA from which this poly			nich was complementary to the	
		Α	CTTTTATGGGGA				
		В	CUUUUAUGGGGA				
		С	GAAAATACCCCT				
		D	GAAAAUACCCCU				
						9700/11/M/J/13	

55	22		nat is the cleotides?	maximu	m number	of hydr	ogen	bonds	in	а	length	of	DNA	containing	700
		Α	350	В	700	С	1050)		D	2100				
														9700/12/	//J/13
56	23	Wh	nich type o	f molecule	is the end	product o	f trans	lation?							
		Α	amino ad	cid											
		В	mRNA												
		С	polypept	ide											
		D	tRNA												
57	24	Αr	oolvpeptide	e molecule	contains the	e amino a	cid sec	quence:						9700/12/	//J/13
"								,							
		glycine – leucine – lysine – valine.													
		The table shows DNA codes for these amino acids.													
			g	glycine	leu	ıcine		lysine)			vali	ne		
				CCC	G	iAA		TTT				CA	λA		
		Wł	nich tRNA a	anticodons	are needed	for the sy	nthes	is of this	s po	lyp	eptide?				
				AA TTT						•					
		В	CCC G	AA UUU	CAA										
		С		UU AAA											
		D		טט טטט											
														9700/12/	//J/13
58	22	One	e gene pro	ovides the	code for the	e product	ion of	which r	nole	ecu	le?				
		Α	amino ac	cid											
		В	DNA												
		С	nucleotid	е											
		D	polypepti	ide											
														9700/13/	M/.I/13

59	23 A polypeptide has the amino acid sequence glycine – arginine – lysine – serine.				
		The table gives possibl	e tRNA anticodons for e	each amino acid.	
			amino acid	tRNA anticodons	
			arginine	UCC GCG	
			glycine	CCA CCU	
			lysine	UUC UUU	
			serine	AGG UCG	
		Which sequence of bas	ses on DNA would code	for the polypeptide?	
		A CCACGCAAGAG			
		B CCTTCCTTCTCG			
		C GGAAGGAAAAG			
		D GGTTGGTTGTGC	;		
40	24	What is the minimum	number of budges as he	ndo in a langth of DNA	9700/13/M/J/13
60	24			_	containing 700 nucleotides?
		A 350 B	700 C 1	050 D 140	
61	21	Which diagram repres	ents a correct base pa	ir of DNA?	9700/13/M/J/13
			Α		В
			$\langle \rangle$		$\langle \rangle$
		PA	TP	PC)) G (P)
		(C		D
		(P) C	G (P)		\\
				(P) I A)) (P)
				A A	

62

63

20

22 Part of the amino acid sequences in normal and sickle cell haemoglobin are shown.

normal haemoglobin sickle cell haemoglobin

thr-pro-glu-glu thr-pro-val-glu

Possible mRNA codons for these amino acids are shown below.

glutamine (glu) GAA GAG proline (pro) CCU CCC threonine (thr) ACU ACC valine (val) GUA GUG

Which tRNA molecule is not involved in the formation of this part of the sickle cell haemoglobin?

9700/11/M/J/14

23 Two sets of bacteria were grown using different types of nitrogen-containing growth media.

One set was grown in a medium containing the 'heavy' isotope of nitrogen, ¹⁵N, until all the DNA was labelled. The other set were grown in a medium containing the 'light' isotope of nitrogen, ¹⁴N, until all the DNA was labelled.

The DNA from each set of bacteria was extracted and centrifuged. The diagram shows the position in the centrifuge tubes of this DNA.

Bacteria with ¹⁵N labelled DNA were transferred to a medium containing ¹⁴N and allowed to reproduce once. The DNA of the new generation of bacteria was extracted and centrifuged.

Which tube shows the position of DNA from this new generation of bacteria?

9700/11/M/J/14

21

67	20 Which nucleic acid bases are pyrimidines?										
07			adenine and gua	·	,a						
			adenine, cytosin		nine						
			cytosine, thymin								
			guanine, cytosin								
										9700/1	2/M/J/14 _
68	21	Wha	at is the correct sequence for the processes involved in the formation of an enzyme in a cell?								
		A 1	transcription $ ightarrow$ condensation $ ightarrow$ translation $ ightarrow$ ionic bonding								
		B 1	ranslation \rightarrow hy	drogen bor	nding \rightarrow to	ranscriptior	$1 \rightarrow co$	ndens	ation		
		C 1	$\operatorname{transcription} o \operatorname{translation} o \operatorname{condensation} o \operatorname{ionic}$ bonding								
		D 1	ranslation \rightarrow tra	nscription	→ ionic b	onding \rightarrow h	nydroge	en bor	nding		
										9700/1	2/M/J/14
69	22		ort piece of DNA ch of the polynu								e bases
		111 66	cir or the polyna	cieotide sti	anus. Sui	ne or the re	ouito c	316 3110	JWII DEIO	vv.	
					nu	mber of nuc	cleotide	e base	s		
					Α	С	G		Т		
				strand 1	6		3				
				strand 2			4				
		How	many nucleotide	es containir	ng adenin	e (A) were	presen	nt in str	and 2?		
		A	2	3 3	(C 4		D	6		
	_										2/M/J/14
70	22	The	diagram shows	some relati	onships b	etween diff	erent r	nucleic	acid bas	ses.	
				/		\times					
				(1 (:	2) 3 (4	.) 5	5			
					\	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$					
		vvnic	ch row is correct	·						•	_
			1	2	2	3			4	5	
		Α	adenine	pur	ine	cytosine	•	pairs	s with	guanine	
		В	cytosine	pur	ine	guanine	•	pairs	s with	uracil	
		С	guanine	pairs	with	cytosine	•	pyrin	nidine	thymine	
		D	thymine	pairs	with	uracil		pyrin	nidine	adenine	
	9700/13/M/J/14										

71 23 The diagram shows the structures of some drugs that have a similar structure to nucleotides. The presence of these drugs reduces nucleic acid synthesis.

acyclovir

Which statement explains how these drugs reduce nucleic acid synthesis?

- A Increasing the concentration of these drugs results in the increased length of the nucleic acid.
- **B** They are non-competitive inhibitors of the enzymes that catalyse the synthesis of DNA or RNA.
- C They bind to pyrimidine nucleotides and the base pair is the wrong size.
- D They replace purine nucleotides causing the synthesis of incomplete nucleic acids.

9700/13/M/J/14

- 72 What terminates the formation of a polypeptide chain during protein synthesis in cells?
 - A when a 'stop' codon is reached on the mRNA molecule
 - B when a 'stop' codon is reached on the tRNA molecule
 - **C** when the ribosome reaches the end of the mRNA molecule
 - **D** when the ribosome reaches the end of the tRNA molecule

9700/13/M/J/14

73 Which row shows two pairs of nucleotides formed during transcription?

	first base pai	r transcribed	second base pair transcribed			
	bases	number of hydrogen bonds	bases	number of hydrogen bonds		
Α	AU	2	CG	2		
В	AU	2	CG	3		
С	AU	2	TU	2		
D	AU	3	CG	2		

9700/11/M/J/15

											
74	21	Which row correctly identifies the features of DNA and RNA molecules?									
			DNA and RNA	DNA and RNA	hydrogen bonds form						
			contain both purine and pyrimidine bases	both contain a pentose sugar	between bases in some RNA						
		Α	√	✓	✓	key					
		В	3 ✓	✓	x	√ = correct statement					
		C	;	x	✓	x = incorrect statement					
			x	✓	X						
						9700/11/M/J/15					
75	22	Two	o polynucleotide strands ma	ake up a DNA mo	lecule.						
		Wh	at is a correct description?								
		Α	The percentage of cytosin	e percentage of cytosine is 50% of that of guanine in the whole molecule.							
		В	The percentage of cytosin	percentage of cytosine is the same as that of guanine in each strand.							
		С	The percentage of cytosin	percentage of cytosine is the same as that of guanine in the whole molecule.							
		D	The percentage of cytosin	e is the same in e	each strand of the molecu	ıle.					
76	20	۱۸/۱	nat is needed to transcribe	DNA2		9700/11/M/J/15					
76	20			DIVA:							
		A	DNA ligase								
		В	DNA polymerase								
		C	ribosomes								
		D	RNA polymerase			0700/42/M/1/45					
77	21	In a	ribosome, which bond hold:	s together two adj	acent amino acids?	9700/12/M/J/15 _					
		Α	disulfide								
		В	hydrogen								
		С	ionic								
		D	peptide								
						9700/12/M/J/15					

24

9700/13/M/J/15

78	22 The diagram shows part of a DNA molecule.						
				A G C C			
		How r	many hydrogen bond	s are involved in hol	ding these strands o	of DNA together?	
		A 1	1 B 9	C 8	D 4	Į.	
	20	\A/biab	way agmantly daggi	ihaa adanina?			9700/12/M/J/15
79	20	vvnicn	row correctly descri	ibes adenine?			
			complementary base	component on nucleotide strand it is attached to	d ring structure	;	
		Α	thymine	deoxyribose	double		
		В	thymine	phosphate	single		
		С	uracil	phosphate	double		
		D	uracil	ribose	single		
80	21	Which	h row shows two pa	irs of nucleotides fo	ormed when mRNA	is translated?	9700/13/M/J/15 _
			first base pa	ir translated	second base	pair translated	
			bases present	number of hydrogen bonds	bases present	number of hydrogen bonds	
		Α	AT	2	TU	2	
		В	AU	2	AT	2	
		С	AU	2	GC	3	
		D	AU	3	GC	3	

22 Sickle cell anaemia is caused by a mutation in an allele of the gene that codes for the β-globin polypeptide of haemoglobin.

The diagram shows the sequence of bases in a small section of the coding strand of DNA for both the HbA (normal) and HbS (sickle cell) β -globin alleles.

HbA CTGACTCCTGAGGAGAAGTCT

HbS CTGACTCCTGTGGAGAAGTCT

How will the mutation in the HbS allele result in the production of an altered version of the β -globin polypeptide?

- A tRNA molecule with the anticodon GUG will hydrogen bond to the altered codon on mRNA.
- B All the amino acids coded for after the mutation will differ from those in the HbA protein.
- c mRNA transcribed from the HbS allele will contain the codon CAC instead of the codon CTC.
- **D** The ribosome will be unable to continue translation of the HbS mRNA after the altered codon.

9700/13/M/J/15

- 82 19 What is the function of the enzyme DNA polymerase?
 - A to synthesise a polypeptide using mRNA as a template
 - **B** to synthesise a strand of DNA using a polypeptide as a template
 - C to synthesise a strand of DNA using DNA as a template
 - **D** to synthesise a strand of mRNA using DNA as a template

9700/1/O/N/02

- 20 The following events occur in the replication of DNA.
 - 1. bonds between complementary bases break
 - 2. bonds between complementary bases form
 - 3. opposite strands separate
 - 4. sugar-phosphate bonds form
 - 5. free nucleotides pair with complementary nucleotides on each strand

In which order do these events take place?

	first			-	▶ last
Α	1	3	5	2	4
В	1	5	3	2	4
С	3	1	5	4	2
D	5	1	3	4	2

9700/1/O/N/02

84	21	Th	e sequence of bases or	n part of a molecule	e of DNA is shown.	-
			CAAATGACCA GTTTACTGGT	sense strand antisense stra	and	
		Wh	nat is the sequence of b	ases in mRNA trar	nscribed from this se	equence?
		Α	ATGTTTACTGGT			
		В	AUGUUUACUGGU			
		С	TACAAATGACCA			
		D	UACAAAUGACCA			
85	22	The	e table gives the tRNA a	nticodons for four a	mino acids	9700/1/O/N/02
			o table gives the train ta		Timo doldo.	
				amino acid	anticodon (tRNA)	
				asparagine	UUA	
				glutamic acid	CUU	
				proline	GGA	
				threonine	UGG	
		Ac	ell makes a polypeptide	with the amino acid	d sequence:	
			gluta	mic acid – asparag	ine – threonine – pro	bline
		Wh	nat was the sequence of	bases on the mRN	A from which this wa	s formed?
		Α	GAAAATACCCCT			
		В	AGGGGUGUUUUC			
		С	TCCCCGCAAAAG			
		D	GAAAAUACCCCU			
86	19	W	nich structural feature o	of the DNA molecu	le varies?	9700/1/O/N/02
		A	the arrangement of t		le groups	
		В	the double helical and		da abain	
		С	the order of bases or		ie chain	
		D	the pairing of purines	s with pyrimidines		9700/01/O/N/03
						37 00/0 1/0/10/03

27

87 20 Three polypeptides were made using synthetic mRNA molecules as shown. synthetic mRNA used polypeptide produced UUUUUUUUUUUU phenylalanine-phenylalanine-phenylalanine AAAAAAAAAA lysine-lysine-lysine UUUAAAUUUAAA phenylalanine-lysine-phenylalanine-lysine What are the DNA codes for the amino acids phenylalanine and lysine? phenylalanine lysine Α AAA TTT В AAA UUU С TTT GGG D UUU AAA 9700/01/O/N/03 The RNA triplet UAG acts as a stop codon, terminating the synthesis of a polypeptide. The 88 diagram shows a strand of DNA which codes for four amino acids. Where would a mutation, introducing a thymine nucleotide, result in the termination of transcription? TCCACTCAGTCC 9700/01/O/N/03 22 Which enzyme rejoins sections of DNA in genetic engineering? 89 **DNA** ligase DNA polymerase restriction enzyme reverse transcriptase 9700/01/O/N/03 22 In the DNA sequence for sickle cell anaemia, adenine replaces thymine in a CTT triplet, forming 90 the triplet CAT. During synthesis of the sickle cell haemoglobin molecule, the amino acid valine is incorporated instead of glutamic acid. What is the anticodon in the transfer RNA molecule carrying this valine? A CAT **B** CAU C GTA **D** GUA 9700/01/O/N/04

28

91 23 In transcription, what is transcribed and what is the product?

	transcribed	product		
Α	DNA	mRNA		
B DNA		polypeptide		
С	mRNA	DNA		
D	mRNA	polypeptide		

9700/01/O/N/04

24 The table shows mRNA triplets and their corresponding amino acids.

mRNA triplet	GCA GCG		GAA	GAG	AAA	AAG
amino acid	ala	ala	glu	glu	lys	lys

A tripeptide is glu-lys-ala.

Which sequence of bases in DNA could code for this tripeptide?

- A CTCCGTTTT
- **B** CTTTTCCGT
- **C** TTCCGTCTT
- **D** TTTCTCCGC

9700/01/O/N/04

25 Analysis of DNA produced the following ratios of nitrogenous bases.

source of DNA	ratio of purines to pyrimidines				
bean seeds	0.99				
cow heart	1.01				
human liver	1.02				
rat bone marrow	1.00				

Which statement explains the difference in the ratios?

- A Animal DNA contains more purines than pyrimidines.
- **B** Different parts of organisms contain different proportions of purines and pyrimidines.
- C DNA contains thymine instead of uracil.
- **D** There are variations in the accuracy of analytical techniques.

9700/01/O/N/04

94 21 Which diagram shows the bond linking the individual units of a nucleic acid?

Α

$$c-o-c$$

Е

$$\begin{array}{c} H \\ C - N - C - C \\ \parallel \\ O \end{array}$$

_

$$\mathsf{C}-\mathsf{O}-\mathsf{P}-\mathsf{O}-\mathsf{C}$$

ח

9700/01/O/N/05

22 Tuberculosis (TB) is treated with a combination of antibiotics including rifampicin and streptomycin.

- rifampicin inhibits polymerisation of bacterial RNA
- · streptomycin binds to and inhibits bacterial ribosomes

Which stages of protein synthesis are inhibited by rifampicin and streptomycin?

	rifampicin	streptomycin			
Α	transcription	transcription			
В	transcription	translation			
С	translation	transcription			
D	translation	translation			

9700/01/O/N/05

96 23 A polypeptide has the amino acid sequence glycine – arginine – lysine – serine.

The table gives possible tRNA anticodons for each amino acid.

amino acid	tRNA anticodons			
arginine	UCC GCG			
glycine	CCA CCU			
lysine	UUC UUU			
serine	AGG UCG			

Which sequence of bases on DNA would code for the polypeptide?

- A CCACGCAAGAGC
- **B** CCTTCCTTCTCG
- C GGAAGGAAAAGC
- **D** GGTTGGTTGTGC

9700/01/O/N/05

97 24 The table shows the percentages of nitrogenous bases in four samples of nucleic acids.

Which base is adenine?

aamala	bases									
sample	Α	В	С	D	uracil					
1	19	31	30	19	nil					
2	27	23	24	26	nil					
3	25	25	nil	25	25					
4	17	32	33	18	nil					

9700/01/O/N/05

98 20 What is the function of the enzyme DNA polymerase in a cell?

- A to synthesise a polypeptide using DNA as a template
- B to synthesise a strand of DNA using a polypeptide as a template
- C to synthesise a strand of DNA using DNA as a template
- **D** to synthesise a strand of mRNA using DNA as a template

9700/01/O/N/06

99 21 A culture of bacteria had all its DNA labelled with the heavy isotope of nitrogen, ¹⁵N. The culture was then allowed to reproduce using nucleotides containing normal ¹⁴N. The DNA was examined using a centrifuge after one generation and again after two generations.

The diagram shows the position of the DNA band at **Z** in the centrifuge tube when the DNA was first labelled.

In which pattern would the DNA be found after the first and after the second cell generations?

	after first generation	after second generation				
Α	half at X and half at Y	quarter at X , quarter at Z and half at Y				
В	half at X and half at Z	quarter at X , quarter at Z and half at Y				
С	all at Y	half at X and half at Y				
D	all at Z	half at Y and half at Z				

9700/01/O/N/06

100	22	What terminates the formation of a polypeptide chain during protein synthesis in cells?
		A when a 'stop' codon is reached on the mRNA molecule
		B when a 'stop' codon is reached on the tRNA molecule
		C when the ribosome reaches the end of the mRNA molecule
		D when the ribosome reaches the end of the tRNA molecule
101		9700/01/O/N/06
101	20	The diagram shows part of a DNA molecule.
		Where are hydrogen bonds found?
		A C C C C C C C C C C C C C C C C C C C
		9700/01/O/N/07
102	21	Which type of molecule is the end product of translation?
		A amino acid
		B DNA
		C mRNA
		D polypeptide
103	22	An unidentified single-stranded molecule was described as having the following features.
		complementary base pairing along some of its length
		an area that can attach to a ribosome
		a site to which a specific amino acid attaches
		What is the unidentified molecule?
		A DNA polymerase
		B messenger RNA
		C RNA polymerase
		D transfer RNA
		9700/01/O/N/07

32

104	23	Some antibacterial drugs can affect the synthesis of proteins.									
		antimicrobial drug	rifampicin	streptomycin	tetracycline						
		mode of action	binds to RNA polymerase	genetic code misread during translation	prevents binding of tRNA to ribosome						
		Which is the co	orrect set of immediate effe	ects of these drugs?							
		antimicrobial drug	rifampicin	streptomycin	tetracycline						
		Α			amino acids not added to growing chain						
		В	mRNA not synthesised	defective protein synthesised	amino acids not added to growing chain						
		С	mRNA not synthesised	mRNA does not bind to ribosome	transcription prevented						
		D	transcription prevented	defective protein synthesised	mRNA does not bind to ribosome						
105	20	Which diagrar	n shows the bond linking	the individual units of a n	9700/01/O/N/07 _ nucleic acid?						
		Α	В	С	D						
		c-o-c	C-N-C- O	C C-O-P-O	O						
106	21	What is the fund	ction of the enzyme RNA p	olymerase?	9700/01/O/N/08						
	A to form a polypeptide using mRNA as a template										
		B to form a st	rand of DNA using mRNA	as a template							
		C to form a st	trand of mRNA using DNA	as a template							
		D to form a st	rand of mRNA using tRNA	as a template							
					9700/01/O/N/08						

107	22	The ta	able gives the tRNA anticodons for four amino acids.										
				amino acid	anticodon (tRNA)								
				asparagine	UUA								
				glutamic acid	CUU								
				proline	GGA								
		threonine UGG											
		A cell makes a polypeptide with the amino acid sequence:											
	glutamic acid – asparagine – threonine – proline												
	What was the sequence of bases on the strand of the DNA which was complimentary to the mRNA from which this polypeptide was formed?												
		A C	TTTTATGGGGA										
		B C	UUUUAUGGGGA										
		C G	SAAAATACCCCT										
		D G	AAAAUACCCCU										
108	21	Tho	following statemen	ate describe event	ts that take place	during DNA	9700/01/O/N/08						
100	21		cription.	its describe event	is that take place	during DNA	replication and						
		Which	n statement is not c	orrect?									
			Ī			DNA							
						replication	transcription						
		Α	adenine pairs with	thymine		yes	no						
		В	both DNA polynuc	leotide chains act as	s templates	yes	no						
		С	the original DNA n	nolecule is changed	after the process	no	yes						
		D	uracil pairs with ac	denine		no	yes						
	_						9700/11/O/N/09						
109	22	A pep	tide consists of ten a	amino acids of four o	different kinds.								
			is the theoretical meptide?	inimum number of t	RNA molecules requ	ired to translate	e the mRNA for						
		A 4	B 1	0 c	12 D 3	30							
440	- 00	\\/\l= -4	desether commune DN		haaiaa in a aallQ		9700/11/O/N/09						
110	23		does the enzyme DN		nesise in a ceil?								
				olypeptide using DNA as a template									
		B a	strand of DNA using	g a polypeptide as a	template								
			strand of DNA using	•									
		D a	strand of mRNA usi	ng DNA as a templa	te								
							9700/11/O/N/09						

443	22	The	following	atatama	onto d	aariba	ovente	that	toko	nlana	durina	DNIA	raplication	and
113	22		cription.	Stateme	ents u	escribe	events	llial	lake	piace	during	DINA	replication	anu
		Which	statemer	nt is not	correct	?								
												NA cation	transcript	ion
		A adenine pairs with thymine									ye	es	no	
		В	both DN/	A polynu	cleotid	e chains	s act as	templa	ates		ye	es	no	
		С	, , , , , , , , , , , , , , , , , , ,							ess	n	10	yes	
		D	uracil pa	irs with a	adenine	e					n	10	yes	
													9700/12/	O/N/09
114	23	A pe	otide cons	ists of te	n amin	o acids	of four d	ifferen	t kinds					
			is the the eptide?	eoretical	minimu	um num	ber of tF	RNA m	nolecul	es requ	ired to	translat	e the mRN	A for
		A 4		В	10		C 1	2		D 3	80			
		^ -			10			2		D 3			9700/12/	O/N/09
115	24	Whic	h diagram	shows t	he sen	ni-conse	rvative i	replica	tion of	a section	on of a ı	molecu	le of DNA?	_
		G G C A G T T C C C C				\(\frac{1}{2} \)			G G G G T C C A C C C G A				U	
		G G G C(A G U(U(C(A C(-(U(G A		c Per (Per (Per (Per (Per (Per (Per (Per (PP	A	A)C)C G SU)C A A G G G A))C S W U C S W U			G G A A ICC	D PP	60 60	A - > 2 CC- U W	A C C G T C A A G T G G A C T T

116	20	DNA was extracted from the salivary glands of a fruit fly and a human cheek cell.											
		In which wa	which way did the DNA molecules differ?										
		A in the ra	in the ratio of adenine to thymine										
		B in the s	n the sequence of the nucleotides										
		C in the ty	ype of pent	ose sugar									
		D in the ty	ypes of nuc	cleotide									
117	21	Which state	ment desc	rihas tha s	emi-conse	anyatiye rej	olication of		700/11/O/N/10				
117	21	William State	ment desc	indes the s	SCITII-COTISC	or valive rep	Jilcation of	DIVA:					
		A Parenta	al DNA is b	roken dow	n into nuc	leotides ar	nd reasser	nbled with new nucleotide	es.				
		B Parenta	al DNA is s	plit into tri	plets and r	ew triplets	are adde	d.					
		C Parenta	al DNA is s	plit into tw	o strands,	each of w	hich is rep	licated.					
		D Parenta	al DNA ren	nains intac	t and a ne	w daughte	r DNA cop	y is built from new nucleo	otides.				
								9	700/11/O/N/10				
118	22	The table sl	hows the p	ercentages	s of nitroge	nous base	s in four s	amples of nucleic acids.					
		Which base	is adenine	?									
			T .					1					
		sample		ercentage			S						
			Α	В	С	D	uracil						
		1	1 19 31 30 19 nil										
		2	2 27 23 24 26 nil										
		3	25	25	nil	25	25						
		4	17	32	33	18	nil						
								9	700/11/O/N/10				

119 23 The table shows the role of four different proteins involved in DNA replication.

protein	helicase	topoisomerase	single-strand binding protein	DNA polymerase
role	unwinds the parental DNA double helix	breaks and rejoins the DNA strands	binds to separated DNA strands to stabilise them	synthesises strand of DNA

Which shows the function of these proteins?

	helicase	topoisomerase	single-strand binding protein	DNA polymerase
A	adds DNA nucleotides to the 3' end of a growing polynucleotide strand	prevents original strands reforming complementary base pairs	enables tension caused by unwinding to be released	makes strands available as templates
В	enables tension caused by unwinding to be released	prevents original strands reforming complementary base pairs	makes strands available as templates	adds DNA nucleotides to the 3' end of a growing polynucleotide strand
С	enables tension caused by unwinding to be released	makes strands available as templates	adds DNA nucleotides to the 3' end of a growing polynucleotide strand	prevents original strands reforming complementary base pairs
D	makes strands available as templates	enables tension caused by unwinding to be released	prevents original strands reforming complementary base pairs	adds DNA nucleotides to the 3' end of a growing polynucleotide strand

9700/11/O/N/10

19 The table shows the percentages of bases in DNA from various types of cell.

	percentage of bases in DNA						
source of DNA	adenine	guanine	thymine	cytosine			
calf thymus	28.2	21.5	27.8	22.5			
bull spleen	27.9	22.7	27.3	22.1			
bull sperm	28.6	22.2	27.2	22.0			
rat bone marrow	28.7	21.4	28.4	21.5			
yeast	31.3	18.7	32.9	17.1			

What is a valid deduction from these data?

- **A** All cells from the same species have approximately the same content of DNA.
- **B** Small differences in DNA from different cells have large effects.
- **C** The four bases show complementary base pairing.
- **D** The structure of DNA is different in yeast and animal cells.

9700/12/O/N/10

120

121 20 Which row shows the correct combination?

	triplet code	codon	anticodon
Α	DNA	mRNA	tRNA
В	DNA	tRNA	mRNA
С	mRNA	DNA	tRNA
D	tRNA	mRNA	DNA

9700/12/O/N/10

122 21 A culture of bacteria had all its DNA labelled with the heavy isotope of nitrogen (15N). A sample was taken and spun in a centrifuge.

The diagram shows the position of the DNA band at Z in the centrifuge tube.

The culture was then allowed to reproduce using nucleotides containing the normal isotope of nitrogen (¹⁴N). Samples were taken and spun in a centrifuge after one generation and again after two generations.

In which pattern would the DNA be found after the first and after the second generations?

	after first generation	after second generation		
Α	half at X and half at Y	quarter at X, quarter at Z and half at Y		
В	half at X and half at Z	quarter at X, quarter at Z and half at Y		
С	all at Y	half at X and half at Y		
D	all at Z	half at Y and half at Z		

22 S and T are products of a biochemical pathway. A different enzyme, coded for by different specific genes, catalyses each step in the pathway.

What is the possible outcome to the pathway if a mutation in gene 3 leads to an inactive enzyme?

- A There is a decrease in the activity of gene 1 and gene 2.
- **B** There is an accumulation of product S.
- C There is an increase in the rate of reaction of enzyme 4.
- **D** There is an increase in the production of T.

124	29	The table	shows the role of four	different proteins invo	olved in DNA replication	1.					
		protein	helicase	topoisomerase	single-strand binding protein	DNA polymerase					
		role	unwinds the parental DNA double helix	breaks and rejoins the DNA strands	binds to separated DNA strands to stabilise them	synthesises strand of DNA					
		Which shows the function of these proteins?									
			helicase	topoisomerase	single-strand binding protein	DNA polymerase					
		A	adds DNA nucleotides to the 3' end of a growing polynucleotide strand	prevents original strands reforming complementary base pairs	enables tension caused by unwinding to be released	makes strands available as templates					
		В	enables tension caused by unwinding to be released	prevents original strands reforming complementary base pairs	makes strands available as templates	adds DNA nucleotides to the 3' end of a growing polynucleotide strand					
	С		enables tension caused by unwinding to be released	makes strands available as templates	adds DNA nucleotides to the 3' end of a growing polynucleotide strand	prevents original strands reforming complementary base pairs					
		D	makes strands available as templates	enables tension caused by unwinding to be released	prevents original strands reforming complementary base pairs	adds DNA nucleotides to the 3' end of a growing polynucleotide strand					
125	24	\\/\lai = 4			antication of DNIA2	9700/13/O/N/10					
125	31		atement describes the ental DNA is broken do			now puglootides					
			ental DNA is bloken do			new nucleotides.					
			ental DNA is split into t								
		D Pare	ental DNA remains into	act and a new daught	er DNA copy is built fr	om new nucleotides. 9700/13/O/N/10					
126	33	DNA wa	s extracted from the s	alivary glands of a fru	it fly and a human ch	eek cell.					
		In which	way did the DNA mol	ecules differ?							
		A in th	e ratio of adenine to t	hymine							
		B in th	e sequence of the nu	cleotides							
		C in th	e type of pentose sug	ar							
		D in th	e types of nucleotide								
						9700/13/O/N/10					

127	34	The table s	shows the p	ercentages	s of nitroge	enous base	s in four sa	amples of r	nucleic acids.	
		Which bas	e is adenine	e?						
		sample	ı	percentage	of nitroge	nous base	s			
		Sample	Α	В	С	D	uracil			
		1	19	31	30	19	nil			
		2	27	23	24	26	nil			
		3	25	25	nil	25	25			
		4	17	32	33	18	nil			
420								10114	9700/13/	
128	20		c engineeri a specific p					DNA con	taining 6000 nucled	otides
		What is the	e total numl	per of amir	no acids in	this polyp	eptide?			
		A 500	В	1000	C	2000	D	3000		
420	- 04	\\// a=t===== a=t==== a=t==== a=t==== a=t==== a=t==== a=t===== a=t===== a=t===== a=t==== a=t==== a=t==== a=t=== a=t=== a=t==== a=t=== a=t== a=t=== a=t==			f DNA	la sula a a a	:		9700/11/	O/N/11
129	21	What mak		t copying o	T DNA MO	iecules po	ssidie?			
			pairing 							
		-	gen bonding	_	nucleotide	eS .				
		•	-phosphate							
		D the do	ouble helix s	shape					9700/11/	/O/N/11
130	22	Which mo	lecule has	its synthes	sis directly	controlled	by DNA?			
		A amyla	se							
		B choles	sterol							
		C glycog	gen							
		D phosp	holipid							
424	22	Dantaria		i	di	_:: 15 N I	After 22		9700/11/	
131	23	Bacteria were grown in a medium containing ¹⁵ N. After several generations, all of the DNA contained ¹⁵ N. Some of these bacteria were transferred to a medium containing the common isotope of nitrogen, ¹⁴ N. The bacteria were allowed to divide once. The DNA of some of these bacteria was extracted and analysed. This DNA was all hybrid DNA containing equal amounts of ¹⁴ N and ¹⁵ N.								
			The remaining bacteria were left in the medium with ¹⁴ N and allowed to divide one more time. The DNA of some of these bacteria was extracted and analysed.							
		What is the	e compositi	on of this I	DNA?					
		A 25 % l	nybrid DNA							
		B 50 % l	nybrid DNA							
		C 75% h	nybrid DNA							
		D 100%	hybrid DN	A						
									9700/11/	O/N/11

20 In a genetic engineering experiment, a piece of double-stranded DNA containing 12 × 10³ nucleotides coding for specific polypeptide is transcribed and translated.

What is the total number of amino acids in this polypeptide?

- **A** 6×10^{3}
- **B** 4×10^{3}
- **C** 2×10^3
- **D** 1×10^3

9700/12/O/N/11

133 21 What is the correct sequence for the processes involved in the formation of an enzyme in a cell?

- **A** transcription \rightarrow condensation \rightarrow translation \rightarrow ionic bonding
- **B** translation \rightarrow hydrogen bonding \rightarrow transcription \rightarrow condensation
- \mathbf{C} transcription \rightarrow translation \rightarrow condensation \rightarrow ionic bonding
- $\textbf{D} \quad \text{translation} \rightarrow \text{transcription} \rightarrow \text{ionic bonding} \rightarrow \text{hydrogen bonding}$

9700/12/O/N/11

134 22 The diagram shows part of a DNA molecule.

Which row correctly identifies the structures labelled 1, 2, 3 and 4?

	1	2	3	4
Α	cytosine	phosphate	guanine	deoxyribose sugar
В	deoxyribose sugar	phosphate	adenine	cytosine
С	deoxyribose sugar	phosphate	cytosine	thymine
D	phosphate	deoxyribose sugar	cytosine	adenine

Bacteria were grown in a medium containing ¹⁵N. After several generations, all of the DNA contained ¹⁵N. Some of these bacteria were transferred to a medium containing the common isotope of nitrogen, ¹⁴N. The bacteria were allowed to divide once. The DNA of some of these bacteria was extracted and analysed. This DNA was all hybrid DNA containing equal amounts of ¹⁴N and ¹⁵N.

Some bacteria from the medium with ¹⁵N were transferred into a medium of ¹⁴N. The bacteria were allowed to divide twice. The graph shows the percentages of ¹⁴N and ¹⁵N in the DNA of these bacteria.

Some bacteria from the medium with ¹⁵N were transferred into a medium of ¹⁴N. The bacteria were allowed to divide three times.

What would be the percentages of ¹⁴N and ¹⁵N in the DNA extracted from these bacteria?

- 136 29 What makes the exact copying of DNA molecules possible?
 - A base pairing
 - B hydrogen bonding between nucleotides
 - C sugar-phosphate backbone
 - D the double helix shape

9700/13/O/N/11

137	30	Wh	ich molecule has	its synthesis dir	ectly co	ntrolled by [DNA?		-
		Α	amylase						
		В	cholesterol						
		С	glycogen						
		D	phospholipid						
									9700/13/O/N/11
138	31		gene codes for the d prevents its rep						DNA during interphase gene.
		Wh	nich statement ex	cplains why this	mutation	may cause	e cancer?	?	
		Α	Lack of p53 alle	ows cells to unde	ergo mit	osis.			
		В	Lack of p53 alle	ows cells with da	amaged	DNA to rep	licate.		
		С	The carcinoger	n in cigarette sm	oke incr	eases the ra	ate of cel	l division.	
		D	The p53 cause	s uncontrolled c	ell divisi	on.			
								5114	9700/13/O/N/11
139	32		a genetic engined ling for a specific					DNA cont	aining 6000 nucleotides
		Wh	at is the total nu	mber of amino a	cids in t	nis polypep	tide?		
		Α	500	B 1000	С	2000	D	3000	
									9700/13/O/N/11
140	33	con isot bac	tained ¹⁵ N. Som ope of nitrogen,	ne of these bac ¹⁴ N. The bacte	teria we ria were	re transferi allowed to	red to a	medium once. The	rations, all of the DNA containing the common DNA of some of these aining equal amounts of
			e remaining bacte A of some of the					wed to div	vide one more time. The
		Wh	at is the compos	ition of this DNA	?				
		Α	25 % hybrid DN	Α					
		В	50 % hybrid DN	Α					
		С	75 % hybrid DN	Α					
		D	100% hybrid D	NA					
444	20	\\/h	at does the proce	es of translation	roquiro')			9700/13/O/N/11
141	20	_	-		-				
		A		otide bases and					
		В		d RNA polymera					
		C	mRNA, ribosom		merase				
		D	mRNA, ribosom	es and tRNA					9700/11/O/N/12

142	21 Which features of DNA enable it to meet these requirements as a molecule of inheritance?								
					requirement of DNA molecule				
		ability to rema			ability to contain ability to transfer information		ability to replicate		
		Α	complemen base pairi	,	ation of mRNA r translation	sequence of nucleotides	sugar-phosphate backbone		
		В	formation of r		mplementary ase pairing	sugar-phosphate backbone	sequence of nucleotides		
		С	sequence nucleotide		ar-phosphate backbone	complementary base pairing	formation of mRNA for translation		
		D	sugar-phosp backbon	I	equence of nucleotides	formation of mRNA for translation	complementary base pairing		
							9700/11/O/N/12		
143	22	Which	h diagram show	s the bond link	king the individ	ual units of a nucleic acid			
			Α	В		С	D		
				H					
							c—o—ç—c		
		c—	-o—c	C—N—	C—C C-	-0-P-0-C			
				(O		
				`	9		9700/11/O/N/12		
144	21	Which	n is not a descr	iption of a gen	e?		3100/11/0/14/12		
			length of DNA the formation			ion as a sequence of nuc	cleotides that can result		
						ls, each with a sequence gether by hydrogen bond			
			sequence of n		ch can be cop	ied by complementary ba	ase pairing and then be		
		D a sequence of nucleotides that can be transcribed using a polymerase enzyme and free activated nucleotides and which results in the formation of a messenger RNA molecule							
							9700/12/O/N/12		
145	22	Which	n row in the tabl	e correctly sho	ows situations	n which both DNA and F	RNA are both involved?		
			replication	transcription	translation				
		_				kov			
		B	\ \ \ \ \ \	×	<i>x</i> ✓	key ✓ involved			
		С	x	1	x	x not involved			
		D	x	X	<i>,</i>				
1					-				

147

146 23 The diagram shows the stages in the production of a polypeptide.

DNA nucleotide sequence

template strand TACGACAATCGC

mRNA sequence AUGCUGUUAGCG

amino acid sequence met leu leu ala

Which feature of the triplet code is illustrated by the information given?

- A An amino acid can be coded for by more than one triplet.
- **B** The triplet code is non-overlapping and is only read in one direction.
- **C** The triplet code is universal for the DNA of all organisms.
- **D** There are some triplets that code for 'start' and 'stop'.

9700/12/O/N/12

19 The sequence of nucleotides in DNA in a gene that controls the synthesis of a protein is arranged in triplets, each coding for specific amino acids. The table shows three examples of these triplets.

	triplet code	example
1	DNA code	TAC
2	mRNA code	AUG
3	tRNA code	UAC

Which are the correct codon and anticodon?

	codon	anticodon
Α	1	3
В	2	3
С	3	1
D	3	2

9700/13/O/N/12

20 Enzymes are1..... proteins, made up of polypeptides.

A gene is a sequence of2....., which are parts of a3..... molecule coding for a polypeptide.

Which words correctly complete gaps 1, 2 and 3 in the sentences?

	1	2	3
Α	fibrous	amino acids	tRNA
В	fibrous	bases	DNA
С	globular	nucleotides	DNA
D	globular	triplets	mRNA

9700/13/O/N/12

149	21	Which process does not occur during the formation of messenger RNA?					
		Α	condensation				
		В	polymerisation				
		С	replication				
		D	transcription				
150	20	\ \ /b	ich statements about complementary base pairing are correct	2	9700/13/O/N/12		
150	20	VVII	, , , ,	l.f			
			1 Cytosine forms two hydrogen bonds with guanine.				
			2 Purines and pyrimidines are different sizes.				
			3 Adenine forms the same number of hydrogen bonds	s with thymine	and uracil.		
			4 The base pairs are of equal length.				
		Α	1, 2 and 3 only B 1, 2 and 4 only C 1, 3 and 4 only D	2, 3 and 4 on	,		
151	21	Wh	at does the enzyme DNA polymerase synthesise in a cell?		9700/11/O/N/13		
		Α	a polypeptide using DNA as a template				
		В	a strand of DNA using a polypeptide as a template				
		С	a strand of DNA using DNA as a template				
		D	a strand of mRNA using DNA as a template				
					9700/11/O/N/13		
152	19		following statements describe events that take place scription.	during DNA	replication and		
		Whi	ch row is not correct?				
			T	T			
				DNA replication	transcription		
		Α	adenine pairs with thymine	yes	no		
		В	both DNA polynucleotide chains act as templates	yes	no		
		С	the original DNA molecule is changed after the process	no	yes		
		D	uracil pairs with adenine	no	yes		
153	20	Wh	ich statements about complementary base pairing are correct?)	9700/12/O/N/13		
			Purines and pyrimidines are different sizes.				
			2 It occurs during translation.				
			3 The base pairs are of different length.				
			4 Uracil forms two hydrogen bonds with adenine.				
		Α	1, 2 and 3 only B 1, 2 and 4 only C 1, 3 and 4 only D	2. 3 and 4 only	,		
		- •	,,,,,,,,,,,,,,,,,,,,,,,,,,,	_,	9700/12/O/N/13		

154	21		What is the minimum number of base substitutions required to change the nucleotide sequence of the HbA (normal) allele to the HbS (sickle cell) allele?									
		Α	1	В	2	С	3		D	4		
												9700/12/O/N/13
155	19	WI	nat is the minim	um r	number of hydro	ogen	ı bo	onds in a len	gth (of [DNA containing	700 base pairs?
		A	350	В	700	(3	1400		D	2100	
												9700/13/O/N/13
156	20	WI	nich term best o	lesci	ribes the length	of E)N	A that codes	for 1	the	synthesis of a	polypeptide?
		Α	anticodon									
		В	codon									
		С	gene									
		D	nucleotide									
												9700/13/O/N/13
157	21	Wł	nich statements	abou	ut complementa	ry ba	ase	pairing are o	corre	ct?	•	
			1 It occ	urs c	during translatio	n.						
			2 Purines and pyrimidines are the same size.									
			3 The base pairs are of equal length.									
			4 Uraci	forn	ns three hydrog	en b	one	ds with adeni	ne.			
		Α	1 and 2 only	В	1 and 3 only	С	2	2 and 3 only	D)	3 and 4 only	
			•		·			·			•	9700/13/O/N/13
158	17	Lal	boratory mice w	hose	p53 genes had	d bee	en s	switched off	deve	elop	oed tumours.	
			nen their <i>p53</i> ge ew days. Health						ır ce	lls	stopped dividin	g and died within
		Wh	nat do these obs	erva	tions suggest?							
		Α	p53 protein sp	eeds	s up the mitotic	cell	сус	le				
		В	p53 protein ca	uses	s all cells to die							
		С	the p53 gene a	acts	as a tumour su	opre	SSC	or gene				
		D			urages the grov							
			,		3 3							9700/11/O/N/14

159	18	The diagram shows part of a DNA molecule.					
		1 2 3 3 4 3 1 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5					
		Which regions contain phosphate groups?					
		A 1 and 2 B 1 and 4 C 3 and 4 only D 2, 3 and 4					
160	19	9700/11/O/N/14 Some antibiotics work by binding to ribosomes and preventing protein synthesis.					
		Which statement explains why these antibiotics kill bacterial cells but not human cells?					
		A In bacterial cells mRNA is formed in the cytoplasm from naked DNA.					
		B Ribosomes in human cells have a different structure from those in bacterial cells.					
		C The antibiotics cannot pass through human cell surface membranes.					
		D The tRNA molecules in bacterial cells are different from those in human cells.					
161	20	Which statements about tRNA are correct?					
		1 contains base pairing					
		2 contains hydrogen bonds					
		3 is single stranded					
		A 1, 2 and 3 B 1 and 2 only C 1 and 3 only D 2 and 3 only 9700/11/O/N/14					
162	5	Which sequence shows some of the stages in the production and secretion of an enzyme?					
		A Golgi apparatus $ ightarrow$ ribosome $ ightarrow$ rough endoplasmic reticulum $ ightarrow$ mRNA					
		B mRNA $ ightarrow$ smooth endoplasmic reticulum $ ightarrow$ Golgi apparatus $ ightarrow$ vesicle					
		${f C}$ ribosome $ ightarrow$ rough endoplasmic reticulum $ ightarrow$ vesicle $ ightarrow$ Golgi apparatus					
		${f D}$ smooth endoplasmic reticulum $ ightarrow$ mRNA $ ightarrow$ vesicle $ ightarrow$ ribosome					
		9700/12/O/N/14					

163	21	Wh	ich type of sugar and types of bonds are found in a DNA molecule?							
			type		types of bor	nds				
		A	non-	non-reducing		drogen and	ionic			
		В	non-	reducing	hyd	rogen and p	eptide			
		С	re	ducing	cova	covalent and hydrogen				
		D	re	ducing	hyd	rogen and p	eptide			
164	22	\ \ /b	ich nucleic aci	id bassa sus	nurinaa?				9700/12/O/N/14	
104	22				purines?					
		A	adenine and	-						
		В	cytosine and	-						
		C D	guanine and							
		U	uracil and cy	losine					9700/12/O/N/14	
165	23			hort piece of DNA 15 base pairs long was analysed to find the number of nucleotide bases in the polynucleotide strands. Some of the results are shown below.						
		000								
					nı	umber of nu	cleotide bas	ses T		
				A C G T						
				strand 1						
				strand 2				4		
		Hov	w many nucled	many nucleotides containing guanine were present in strand 1?						
		A	2	B 3		C 4	D	6		
166	10	Wh	nich structural	feature of t	he DNA m	olecule var	ies?		9700/12/O/N/14	
	10		hich structural feature of the DNA molecule varies?							
		A	the arrangement of the sugar-phosphate groups							
		В	the double h		_					
		С	the number				e pairs			
		D	the pairing o	of the purine	es with pyr	imidines				
i	I								9700/13/O/N/14	

20 DNA is said to replicate in a semi-conservative way.

Results of Meselson and Stahl's experiments gave overwhelming support to this theory. They used *E. coli* which has a generation time of 50 minutes.

Here are the stages occuring in their experiment but they are in the wrong order. ¹⁴N DNA contains the 'light' isotope of nitrogen. ¹⁵N DNA contains the 'heavy' isotope.

- P All bacteria contain ¹⁵N DNA.
- Q All bacteria contain hybrid DNA (¹⁵N DNA and ¹⁴N DNA).
- R Bacteria contain either all ¹⁴N DNA or hybrid DNA.
- S Bacteria grown in a ¹⁵N medium for many generations.
- T Bacteria transferred to a ¹⁴N medium and sampled every 50 minutes.

Which sequence of letters shows the correct order of the stages in the experiment?

- $A \quad P \to S \to T \to R \to Q$
- **B** $P \rightarrow T \rightarrow S \rightarrow Q \rightarrow R$
- $\boldsymbol{C} \quad S \to P \to T \to Q \to R$
- **D** $S \rightarrow T \rightarrow P \rightarrow R \rightarrow Q$

9700/13/O/N/14

168 21 Which molecules are involved in transcription and which molecules are involved in translation?

	transcription	translation
Α	DNA and mRNA	mRNA and tRNA
В	DNA and tRNA	mRNA and amino acids
С	mRNA and amino acids	DNA and mRNA
D	tRNA and mRNA	amino acids and DNA

9700/13/O/N/14